

ವಿಷಯ: 2023-24ನೇ ಶೈಕ್ಷಣಿಕ ಸಾಲಿನಿಂದ ಎಲ್ಲ ಸ್ನಾತಕ ಪದವಿಗಳಿಗೆ 5 ಮತ್ತು 6ನೇ ಸೆಮೆಸ್ಟರ್ NEP-2020 ಪಠ್ಶಕ್ರಮವನ್ನು ಅಳವಡಿಸಿರುವ ಕುರಿತು.

ಉಲ್ಲೇಖ: 1. ಸರ್ಕಾರದ ಅಧೀನ ಕಾರ್ಯದರ್ಶಿಗಳು(ವಿಶ್ವವಿದ್ಯಾಲಯ 1) ಉನ್ನತ ಶಿಕ್ಷಣ ಇಲಾಖೆ ಇವರ ಆದೇಶ ಸಂಖ್ಯೆ: ಇಡಿ 104 ಯುಎನ್ಇ 2023, ದಿ: 20.07.2023. 2. ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ನಿರ್ಣಯ ಸಂಖ್ಯೆ: 2 ರಿಂದ 7, ದಿ: 31.08.2023.

3. ಮಾನ್ಯ ಕುಲಪತಿಗಳ ಆದೇಶ ದಿನಾಂಕ: 04/09/2023

ಮೇಲ್ಕಾಣಿಸಿದ ವಿಷಯ ಹಾಗೂ ಉಲ್ಲೇಖಗಳನ್ವಯ ಮಾನ್ಯ ಕುಲಪತಿಗಳ ಆದೇಶದ ಮೇರೆಗೆ, 2023–24ನೇ ಶೈಕ್ಷಣಿಕ ಸಾಲಿನಿಂದ ಅನ್ವಯವಾಗುವಂತೆ, ಎಲ್ಲ B.A./ BPA (Music) /BVA / BTTM / BSW/ B.Sc./B.Sc. Pulp & Paper Science/ B.Sc. (H.M)/ BCA/ B.A.S.L.P./ B.Com/ B.Com (CS) / BBA & BA ILRD ಸ್ನಾತಕ ಪದವಿಗಳ 5 ಮತ್ತು 6ನೇ ಸೆಮೆಸ್ಟರ್ಗಳಿಗೆ NEP-2020ರ ಮುಂದುವರೆದ ಭಾಗವಾಗಿ ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ಅನುಮೊದಿತ ಕೋರ್ಸಿನ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಕ.ವಿ.ವಿ. ಅಂತರ್ಜಾಲ <u>www.kud.ac.in</u> ದಲ್ಲಿ ಭಿತ್ತರಿಸಲಾಗಿದೆ. ಸದರ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಕ.ವಿ.ವಿ. ಅಂತರ್ಜಾಲದಿಂದ ಡೌನಲೋಡ ಮಾಡಿಕೊಳ್ಳಲು ಸೂಚಿಸುತ್ತ ವಿದ್ಯಾರ್ಥಿಗಳ ಹಾಗೂ ಸಂಬಂಧಿಸಿದ ಎಲ್ಲ ಬೋಧಕರ ಗಮನಕ್ಕೆ ತಂದು ಅದರಂತೆ ಕಾರ್ಯಪ್ರವೃತ್ತರಾಗಲು ಕವಿವಿ ಅಧೀನದ/ಸಂಲಗ್ನ ಮಹಾವಿದ್ಯಾಲಯಗಳ ಪ್ರಾಚಾರ್ಯರುಗಳಿಗೆ ಸೂಚಿಸಲಾಗಿದೆ.

ಅಡಕ: ಮೇಲಿನಂತೆ

ಗೆ,

ಕರ್ನಾಟಕ ವಿಶ್ವವಿದ್ಯಾಲಯದ ವ್ಯಾಪ್ತಿಯಲ್ಲಿ ಬರುವ ಎಲ್ಲ ಅಧೀನ ಹಾಗೂ ಸಂಲಗ್ನ ಮಹಾವಿದ್ಯಾಲಯಗಳ ಪ್ರಾಚಾರ್ಯರುಗಳಿಗೆ. (ಕೆ.ವಿ.ವಿ. ಅಂರ್ತಜಾಲ ಹಾಗೂ ಮಿಂಚಂಚೆ ಮೂಲಕ ಬಿತ್ತರಿಸಲಾಗುವುದು)

ಪ್ರತಿ:

- 1. ಕುಲಪತಿಗಳ ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 2. ಕುಲಸಚಿವರ ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 3. ಕುಲಸಚಿವರು (ಮೌಲ್ಯಮಾಪನ) ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 4. ಅಧೀಕ್ಷಕರು, ಪ್ರಶ್ನೆ ಪ್ರತ್ರಿಕೆ / ಗೌಪ್ಯ / ಜಿ.ಎ.ಡಿ. / ವಿದ್ಯಾಂಡಳ (ಪಿ.ಜಿ.ಪಿಎಚ್.ಡಿ) ವಿಭಾಗ, ಸಂಬಂಧಿಸಿದ ಕೋರ್ಸುಗಳ ವಿಭಾಗಗಳು ಪರೀಕ್ಷಾ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 5. ನಿರ್ದೇಶಕರು, ಕಾಲೇಜು ಅಭಿವೃದ್ಧಿ / ವಿದ್ಯಾರ್ಥಿ ಕಲ್ಯಾಣ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.

KARNATAK UNIVERSITY, DHARWAD

B.Sc. in ELECTRONICS

Syllabus for V and VI Semester

Discipline Specific Core Course (DSCC) SEMESTER-V

DSCC-09: Theory (Code: 035ELE11) DSCC-10: Practical (Code: 035ELE12) DSCC-11: Theory (Code: 035ELE13) DSCC-12: Practical (Code: 035ELE14) SEC-03: Practical (Code: 035ELE 061)

SEMESTER-VI

DSCC-13: Theory (Code: 036ELE11) DSCC-14: Practical (Code: 036ELE12) DSCC-15: Theory (Code: 036ELE13) DSCC-16: Practical (Code: 036ELE14) Internship/Mini Project-01(Code: 036ELE 091)

> AS PER NEP-2020 With Effective from 2023-24

Karnatak University, Dharwad B.Sc. in Electronics Effective from 2023-24

u	-		Course		Instruction	Total	Duration		Marks		lits
Ser	Type of Course	Theory/ Practical	Code	Course Title	hour/week	hours /sem	of Exam	Formative	Summative	Total	Cred
	DSCC-09	Theory	035 ELE 011	Electronic Communication II	04hrs	56	02hrs	40	60	100	04
	DSCC-10	Practical	035ELE 012	Electronic Communication II Practicals	04hrs	56	03hrs	25	25	50	02
• 7	DSCC-11	Theory	035ELE 013	Embedded Controllers	04hrs	56	02hrs	40	60	100	04
v	DSCC-12	Practical	035ELE 014	Embedded Controllers Practicals	04 hrs	56	03hrs	25	25	50	02
	Other subject										04
	Other subject										04
	Other subject										04
	SEC-3	Practical	035ELE061	PCB design and Simulation	04hrs	56	03hrs	25	25	50	02
										Total	26
X/T	DSCC-13	Theory	036ELE011	Signals and Systems	04hrs	56	02hrs	40	60	100	04
VI	DSCC-14	Practical	036ELE012	Signals and Systems Practicals	04hrs	56	03hrs	25	25	50	02
	DSCC-15	Theory	036ELE013	Internet of Things	04hrs	56	02hrs	40	60	100	04
	DSCC-16	Practical	036ELE014	Internet of Things Practicals	04hrs	56	03hrs	25	25	50	02
	Other subject										04
	Other subject										04
	Other subject										04
	Internship/ Mini Project		036ELE091	Minor Project in Electronics				50	0	50	02
										Total	26

B.Sc. Semester–V

Discipline Specific Course (DSC)-09

Course Title: Electronic Communication -II

Course Code: 035 ELE 11

Type of	Theory		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	/Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
				/Semester		Marks	Marks	
DSCC-09	Theory	04	04	56hrs.	2hrs.	40	60	100

Course Outcomes (COs):

At the end of the course students will be able to:

- 1. Know the various microwave devices, their working and applications.
- 2. Understand the principle and working of different RADAR Systems.
- 3. Know the various types of transmission lines.
- 4. To understand the working principle of optical fiber communication and to know the various types of fiber optic cables.
- 5. Understand the basic concept of cell phone hand set, working principle of cellular communication and wireless technologies.

Unit	Title: Electronic Communication II	56 hrs/				
		sem				
	Microwave Devices for Communication: RF/Microwaves, EM spectrum,					
	Wavelength and frequency, rectangular waveguides, circular waveguides,					
Unit I	microwave cavities, microwave hybrid circuits, directional couplers,	141				
	circulators and isolators, GUNN diode, READ diode, IMPATT diode,					
	BARITT diode, PIN diodes, Schottky barrier diodes, Multicavity Klystron,					
	Magnetron, block diagram of Microwave communication and working,					
	Applications.					
	RADAR Communication Systems: RADAR principles, frequencies and					
Unit II	powers used in RADAR, maximum Unambiguous range, detailed block					
Olin II	diagram of pulsed RADAR system, RADAR range equation-derivation,					
	factors influencing maximum range, effect of ground on RADAR antenna					
	characteristics, Doppler effect, expression for Doppler frequency.					
	MTIRADAR-block diagram, working, CWRADAR-block diagram,					
	working, advantages, applications and limitations, FMCWRADAR-block					
	diagram, numerical examples wherever applicable.					
	Transmission Lines and Optical Fiber Communications :					
	Transmission lines; Introduction, different types of transmission lines					
Unit III	(parallel and coaxial lines), current and voltage relation on RF transmission					
	line, definition ESWR and reflection coefficient.					
	OFC ;Introduction ,block diagram of optical fiber system, advantages,	14 hrs				

	disadvantages and applications, fiber optic cable and its types(step index						
	and graded index). Cable mode fiber (single mode and multimode), light						
	fiber. Numerical problems wherever applicable.						
Cellular Communication and Wireless LANs: Concept of cellular mobile							
Unit IV	communication-cell and cell splitting, frequency bands used in cellular						
	communication, absolute RF channel numbers (ARFCN), frequency reuse,						
	roaming and hand off, authentication of the SIM card of the subscribers,						
	IMEI number, concept of data encryption, architecture (block diagram) of						
	cellular mobile communication network, Multiplexing,						
	FDMA,CDMA,TDMA,OFDMA,GSM						
	.Wireless LAN requirements-Bluetooth, Wi-Fi, MIMO, LTE and 5G						
	technology. Comparative study of GSM and CDMA, simplified block						
	diagram of cellular phone handset, Major components of local area						
	network-Primary characteristics of Ethernet-mobile IP, OSI model.						

-	
Ref	erence Books
1	D Roddy and J. Collen, "Electronics communications",4thedition,PHI,2008
2	Microwaves K C Gupta.
3	Fiber Optic communication Govind Agarwal.
4	Optical Fiber communication Gerd Keyser.
5	DavidTse,PramodViswanath'FundamentalsofWirelessCommunication',Cambridge
	UniversityPress,1 st edition,2005
6	WayneTomasi"AdvancedElectronicCommunicationsystems",-6thedition, Low priced
	edition-Pearson education
7	WayneTomasi-"ElectronicCommunicationsystems,FundamentalsthroughAdvanced V Ed
8	Kennedy & Davis "Electronic Communication Systems" IV th Edition-TATA Mc Graw Hill.
9	Radio Engineering G K Mitthal
10	Introduction to RADAR systems Merrill I Skolnik.

Formative Assessment for Theory					
Assessment Occasion/type	Marks				
Internal Assessment Test1	10				
Internal Assessment Test2	10				
Assignment/Small Project/Activities	10				
Seminar	10				
Total	40 Marks				
Formative Assessment as per guidelines.					

B.Sc. Semester–V

Discipline Specific Course (DSC)-10

Course Title: Electronic Communication II Practicals

Course Code: 035 ELE 012

Type of	Theory		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	/Practical	Credits	hour per	Lectures/Hours	of Exam	Assessment	assessment	Marks
			week	/Semester		Marks	Marks	
DSCC-10	Practical	02	04	56hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course, students will be able to:

- 1. Understand how to find NA and acceptance angle.
- 2. Understand different kinds of losses.
- 3. Understand receiver characteristics.
- 4. Understand time division Multiplexing and De-multiplexing.
- 5. Understand Frequency Multiplier and Frequency selective circuits.
- 6. Understand pulse code modulation and demodulation.

Minimum of 8 experiments from the following to be conducted;

Expt. No	Title: Electronic Communication II Practicals	56 hrs
1	Numerical aperture and acceptance angle of OFC.	
2	Study of receiver characteristics of OFC.	
3	Bending losses in OFC.	
4	Study of Time Division Multiplexing and De-multiplexing	
5	Study of Frequency Multiplier.	
6	QPSK modulator and demodulator	
7	Class C tuned amplifier	
8	Determination of V-I Characteristics curve of a Gunn Diode	
9	Pulse code modulation and demodulation.	
10	Frequency selective circuits- Active Low pass/High pass filters.	
11	Study of Notch filters.	
12	Study of switched mode regulator using PWM.	
13	Wave shaping circuits: clipping/clamping circuits.	

General Instructions:

- 1. Minimum of eight experiments to be performed.
- 2. Practical Records/Journal of the candidate should be certified by the concerned teacher/HOD only after ascertaining successful completion of practical course/experiments by the candidate
- 3. Any new experiment may be added to the list with the prior approval from the BOS.

Scheme of Practical Examination (Distribution of Marks): 25 Marks for Semester end Examination

1.	Basic formula, Units & Nature of graph, Circuit Diagram/Ray Diagram/Schematic diagram.	05 Marks
2.	Tabular column with quantities and unit mentioned experimental skills.	05 Marks
3.	Recording of observations, calculations and drawing graph, and accuracy of the result.	10 Marks
4.	Viva-Voce.	2 Marks
5.	Completed & Certified Journal.	3 Marks
	Total	25 Marks

Note: The same shall be used for internal examination as well as for semester end examination from I Sem to VI Sem from the academic year 2023-24.

B.Sc. Semester–V

Discipline Specific Course (DSC)-11

Course Title: Embedded Controllers

Course Code: 035 ELE 013

Type of	Theory/		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	Practical	Credits	hour per	Lectures/Hours	of Exam	Assessment	assessment	Marks
			week	/Semester		Marks	Marks	
DSCC-11	Theory	04	04	56hrs.	2hrs.	40	60	100

Course Outcomes (COs): At the end of the course, students will be able to:

1. Identify and understand function of different blocks of 8051 microcontrollers.

2. Develop program for I/O port operations, Timers, Serial port and Interrupts using C.

3. Gain the knowledge to interface LCD, Keyboard, ADC, DAC, DC motor, etc.

4. Design and develop small scale embedded systems.

Unit	Title: Embedded Controllers	56 hrs/ Sem
	Introduction: Embedded Systems, Examples of Embedded Systems, Design	
	Parameters of Embedded Systems, Microcontrollers, Memory: Information	
Unit I	Storage Device, Read Only Memory, Random Access Memory, Aligned and	
	Unaligned Memory Accesses, The Microprocessor, Microprocessor	14 hrs
	Architecture Classification, Instruction Set Architecture, Memory Interface-	14 111 5
	Based Architecture Classification, Performance Comparison of Different	
	Architectures, Software System and Development Tools, Software Sub-	
	Systems, Software Development Tools, Debugging Tools and Techniques,	
	Manual Methods, Software-Only Methods, Software-Hard ware Debugging	
	Tools.	
	8051 Microcontroller: - Features, Architecture- general purpose and special	
Unit II	purpose/function registers, Program Status Word (PSW) register, SP, PC,	
	DPTR, Pin diagram 8051, I/O ports functions, Internal memory organization,	
	external memory (ROM and RAM) interfacing.	14bra
	8051 Programming: 8051 addressing modes: Immediate addressing,	141115
	Register addressing, Direct addressing, Indirect addressing.	
	Instructions set of 8051: Data Transfer instructions, Arithmetic instructions,	
	Logical instructions, Branch instructions, Bit manipulation instructions.	
	Simple Assembly language program examples to use these instructions.	
	8051 Stack, Stack and Subroutine instructions. Assembly language program	
	examples on subroutine and involving loops.	

	8051 Microcontroller Hardware Programming in C: Data types, declaring				
	variables, time delays, I/O Programming, Timer Programming.	1.41			
Unit III	Serial Communication- Basics of Serial Data Communication, RS-232				
	standard, 9 pin RS232 signals, UASRT Serial port programming.	14nrs			
	Interrupt programming, keyboard and LCD interfacing, DAC interfacing,				
	Stepper motor and DC motor interfacing.				
	PIC18 Microcontrollers: Overview of the PIC18 Family, Architecture and				
Unit IV	features of 18F458, Status register, Data memory and Special Function				
	Registers, Data memory map, Access RAM, Indirect addressing and				
	accessing tables in data memory, Program memory, Program memory map,				
	Program Counter, Configuration registers, Stacks, Automatic Stack				
	operations, Programmer access to the Stack, Fast Register Stack, Interrupts,	14 hrs			
	Context saving with interrupts, Power supply and reset, Power supply,				
	Power-up and Reset, Oscillator sources. Clock source switching, Parallel				
	Ports, Parallel Slave Port, Watchdog Timer, Capture/Compare/PWM (CCP)				
	Modules, MSSP Serial Port, Low-Voltage Detect, Nano-watt technology,				
	Enhanced Peripherals.				

Ref	erence Books
1.	Muhammad Tahir and Kashif Javed, "ARM Microprocessor Systems: Cortex-M
	Architecture, Programming, and Interfacing,"1 st Edition, CRC Press,2017.
2.	Kenneth J. Ayala, "The 8051 Microcontroller", 3rd Edition, Thomson/Cengage Learning, 1997
3.	Muhammad Ali Mazidi and Janice Gillespie and Rollin D, "The 8051 Microcontroller and Embedded Systems using assembly and C" 1 st Edition, Pearson, 2006.
4.	TimWilmshurst, "DesigningEmbeddedSystemswithPICMicrocontrollers:Principlesandapplic ations", FirstEdition, Elsevier, 2007.
5.	Muhammad Ali Mazidi and Rolin D, Mckinlay, "PIC Microcontroller and Embedded
	Systems using assembly and C for PIC18,"1stEdition, Pearson, 2008.
6.	John Pitman, "Design with PIC Microcontrollers" 1 st Edition, Prentice Hall, 1997.

Formative Assessment for Theory				
Assessment Occasion/ type	Marks			
Internal Assessment Test 1	10			
Internal Assessment Test 2	10			
Assignment/Small Project/Activities	10			
Seminar	10			
Total	40 Marks			
Formative Assessment as per guidelines.				

B.Sc. Semester–V

Discipline Specific Course (DSC)-12

Course Title: Embedded Controllers Practicals

Course Code: 035 ELE 014

Type of	Theory		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	/Practical	Credits	hour per	Lectures/Hours	of Exam	Assessment	assessment	Marks
			week	/Semester		Marks	Marks	
DSCC-12	Practical	02	04	56hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course, students will be able to:

1. Develop assembly language programming skills.

2. Develop program for I/O port operations using C and execute them.

3. Develop program for Timers, Serial port and Interrupts using C and execute them.

Minimum of 8 experiments from the following to be conducted;

Expt. No,	Title: Embedded Controllers Practicals				
	Conduct the experiments by using μ C 8051 kit / Keil μ Vision IDE for 8051.				
1	ALP for Addition, subtraction.				
2	ALP for multiplication and Division of 8-bit number				
3	ALP for Addition and subtraction of two 16-bit number and store the result.				
4	ALP to find 2's compliment of i) 8-bit and ii) 16-bit numbers.				
5	ALP to find largest/Smallest of N given numbers.				
6	ALP to arrange the numbers in ascending and descending order.				
7	ALP to count number of o's and 1's of an 8-bit data.				
	Conduct the experiments, by writing C programs on Keilµ Vision IDE, using 8051 kit / Proteus simulator.				
8	To read 10 data from port P0 and store in internal RAM.				
9	Find the square of a numbers (1to10) using look-up table				
10	To read data from port P0 and send the data to P1 if it is even else send to P2 repeatedly.				
11	To stop/start toggling of LED connected to P0, when there is an external hardware interrupt.				
12	To toggle P0 bit for every 500ms continuously use TIMER 0 to generate time delay.				
13	To read switch status connected to P1.0 if switch is on, turn on LED connected P2.0 on or if switch is off, turn off LED.				
14	To read switch status connected to P1.0 if switch is on set P2.0 on or if switch is off set P2.0 off.				
15	To transmit data "Hello Computer" to PC and receive data "Hi Microcontroller", from PC using USART Serial port.				

Formative Assessment for Practical					
Assessment	Distribution of Marks				
Algorithm	02				
Flow chart	03				
Writing program	05				
Debugging and execution of program	10				
Viva-voce	02				
Completed and certified journal	03				
Total 25 Marks					
Formative Assessment as per guidelines.					

Note: The same shall be used for internal examination and semester end Examination From I sem to VI sem from the Academic Year 2023-24.

B.Sc. Semester–V Skill Enhancement Course: SEC-3 Course Title: PCB Design and Simulation Course Code: 035ELE061

Type of Course	Theory /Practical	Credits	Instruction hour/week	Total No. of Lectures/Hours /Semester	Duration of Exam	Formative Assessment Marks	Summative assessment Marks	Total Marks
SEC-3	Practical	02	04	56 hrs.	3hrs.	25	25	50

Minimum 8 experiments to be conducted;

- 1. Introduction to circuit creation and simulation software TINA student edition/Multisim/LT spice or any other suitable software.
- 2. Simulation of rectifier circuits half wave, full wave bridge rectifier and observe the outputs using virtual oscilloscope.
- 3. Simulation of full wave bridge rectifier with LC and π section filters and observe the outputs using virtual oscilloscope.
- 4. Power supply design with regulators LM7805 and LM7812.
- 5. Designing of clipper circuits and observe the output waveform using virtual oscilloscope.
- 6. Designing of clamper circuits and observe the output waveform using virtual oscilloscope.
- 7. Astable and monostable multivibrator using BC 547. Observe the outputs using virtual oscilloscope.
- 8. Op-Amp inverting/non inverting amplifier simulation. Observe the outputs using virtual oscilloscope.
- 9. Op-Amp instrumentation amplifier design and simulation. Observe the outputs using virtual oscilloscope.
- 10. AM modulation and demodulation. Observe the outputs using virtual oscilloscope.
- 11. FM modulation and demodulation. Observe the outputs using virtual oscilloscope.
- 12. ASK and FSK modulation and demodulation. Observe the outputs using virtual oscilloscope.
- 13. Single side PCB Layout design using CAD tool.
- 14. Development of PCB in hardware Lab using printing, etching, drilling and coating.
- 15. Fabrication of single side PCB for full wave rectifier circuit and resistive load in the lab.

General Instructions:

- 1. Minimum of eight experiments to be performed.
- 2. Practical Records/Journal of the candidate should be certified by the concerned teacher/HOD only after ascertaining successful completion of practical course/experiments by the candidate.
- 3. Any new experiment may be added to the list with the prior approval from the BOS.

Formative Assessment for SEC Practical				
Assessment	Distribution of Marks			
Algorithm / flow chart / circuit diagram	05			
Writing program / arranging components on IDE	05			
Debugging and execution of program / simulation and result	10			
Viva-voce	02			
Completed and certified journal	03			
Total	25 Marks			
Formative Assessment as per guidelines.				

Note: The same shall be used for internal examination and semester end Examination from I sem to VI sem from the academic year 2023-24.

UG Program: 2023-24

GENERAL PATTERN OF THEORY QUESTION COURSE FOR DSCC

(60 marks for Semester end Examination with 2 hrs. duration)

Part-A

1. Question number 01-06 carries 2 Marks each. Answer any 05 questions : 10 marks

Part-B

2. Question number 07- 11 carries 05 Marks each. Answer any 04 questions : 20 marks

Part-C

3. Question number 12-15 carries 10 Marks each. Answer any 03 questions : 30 marks (Minimum 1 question from each unit and 10 marks question may have Sub-questions for 8+2, or 7+3 or 6+4 or 5+5 if necessary)

Total: 60 Marks

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed

B.Sc. Semester–VI

Discipline Specific Course (DSCC)-13

Course Title: Signals and Systems

Course Code: 036 ELE 011

Type of	Theory		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	/Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
				/Semester		Marks	Marks	
DSCC-13	Theory	04	04	56hrs.	2hrs.	40	60	100

Course Outcomes (COs): At the end of the course students will be able

- 1. Gain the knowledge on Signals and Systems
- 2. Understand the operations on Signals
- 3. Know the frequency domain representation of signals
- 4. Know the Laplace Transform and its properties
- 5. Distinguish between continuous-time and discrete-time signals and systems
- 6. Do basic operations on signals
- 7. Apply Laplace transform technique
- 8. Find DTFS and IDTFS of the Signals

Unit	Title: Signals and Systems	
Omt	The Signals and Systems	sem
	Introduction to continuous-time and discrete-time signals: Understanding	
	signals and systems, some real-world examples of signals and systems.	
Unit I	Mathematical and graphical representation of signals, Classification of	
	signals: Continuous and discrete, periodic and non-periodic, even and odd,	
	energy and power signals, related problems to enhance understanding of	14 hrs
	different signal types.	14 11 5
	Elementary signals – unit impulse, unit step, unit ramp, exponential and	
	sinusoidal signals.	
	Introduction to continuous-time and discrete-time systems, examples of	
	systems, interconnections of systems,	
	Properties of systems: Linear, Non-linear, time variance-invariance, causal-	
	non-causal, memory- Memory less systems, feed-back in systems, stability,	
	inverse systems.	
	Operations on signals: amplitude scaling, shifting, folding, time scaling,	
Unit II	addition of two signals etc., Time-domain representation of systems, Linear	
e int in	time-invariant systems, Convolution integral and convolution sum,	14hrs
	properties of convolution, impulse and step response of systems,	
	differential equation representation of LTI systems, properties of LTI	
	systems.	

	Frequency domain representation of systems, magnitude and phase		
	spectrum.		
Unit III	Introduction to transforms, need for transforms. Laplace transforms,		
	Laplace transform of elementary functions.		
	Properties of Laplace transforms, Laplace transform of derivatives and	141115	
	integrals, Laplace transform of unit step, unit ramp and unit impulse		
	functions. Inverse Laplace transforms, HPF method to find inverse L.T,		
	convolution theorem and its application to find inverse L.T.		
	Application of Laplace transforms for solving electrical circuits and		
	differential equations for analysis of systems.		
	Continuous-time Fourier series representation of periodic signals,		
Unit IV	convergence of Fourier series representation, Properties of continuous-time		
	Fourier series-linearity, time shift, frequency shift, scaling, time		
	differentiation, convolution and problems,.		
	Discrete-time Fourier Series (DTFS), properties of discrete-time Fourier		
	series- linearity, time shift, frequency shift, scaling, time differentiation,		
	convolution and problems on DTFS and IDTFS.		

Ref	erence Books
1	Alan V Oppenheim, Alans. Willsky and Hamid Nawab, "Signals and systems", Pearson edition Asia/PHI, 2 nd Edition, 2002.
2	Simon Haykin and Barry Van Veen, "Signals & Systems," Wiley, 2 nd Edition, 2021.
3	MJ Roberts, "Signals and Systems Analysis Using Transform Methods and MATLAB", TMG
	Vinay Ingle, and John G. Proakias, "Digital Image Processing using MATLAB,"

Formative Assessment for Theory				
Assessment Occasion/type	Marks			
Internal Assessment Test1	10			
Internal Assessment Test2	10			
Assignment/Small Project/Activities	10			
Seminar	10			
ſ	Total 40 Marks			
Formative Assessment as per guidelines.				

B.Sc. Semester-VI

Discipline Specific Course (DSC)-14

Course Title: Signals and Systems Practicals

Course Code: 036 ELE 012

Type of	Theory		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	/Practical	Credits	hour per	Lectures/Hours	of Exam	Assessment	assessment	Marks
			week	/Semester		Marks	Marks	
DSCC-14	Practical	02	04	56 hrs.	3 hrs.	25	25	50

Course Outcomes (COs): At the end of the course, students will be able to:

- 1. Learn features of MATLAB as a programming tool.
- 2. Use MATLAB as a simulation tool.
- 3. Learn graphic features of MATLAB.
- 4. Able to generate plots of test signals such as unit impulse, unit ramp, unit step etc.
- 5. Able to perform different operations on signals.

Expt.	Title: Signals and Systems Practicals	56
No.		hours
	Write and execute following program using MATLAB/OCTAVE/SCILAB, etc.	
1	Generate and plot unit sample, unit step, ramp, real sequences	
2	Generate and plot sinusoidal, cosinusoidal and periodic sequences	
3	Generate even & odd components of a sequence	
4	Perform amplitude scaling, time scaling, folding and time-shifting operations on	
4	signals	
5	Perform Up sampling and down sampling operation on a given sequence	
6	Perform addition, subtraction and multiplication operation on signals	
7	Find the linear convolution of two finite duration sequences.	
8	Find the cross-correlation of two finite duration sequences	
9	Evaluate & plot auto-correlation of a sequence	
10	Compute the DTFS of a sequence and plot the magnitude and phase response	
11	Compute the IDTFS of a sequence	
12	Verify the sampling theorem	

Formative Assessment for Practical						
Assessment	Distribution of Marks					
Algorithm / Flow chart	05					
Writing program	05					
Debugging and execution of program	10					
Viva-voce	02					
Completed and certified journal	03					
Total	25 Marks					
Formative Assessment as per guidelines.						

Note: The same shall be used for internal examination and semester end Examination from I sem to VI sem from the academic year 2023-24.

.

B.Sc. Semester-VI

Discipline Specific Course (DSCC)-15

Course Title: Internet of Things

Course Code: 036 ELE 013

Type of	Theory		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	/Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
				/Semester		Marks	Marks	
DSCC-15	Theory	04	04	56hrs.	2hrs.	40	60	100

Course Outcomes (COs): At the end of the course students will be able to:

- 1. Understand the basic concepts and principles of the Internet of things.
- 2. Gain knowledge of different IoT technologies and protocols.
- 3. Acquire practical skills in designing and implementing IoT applications.
- 4. Develop an understanding of IoT security and privacy considerations.

Unit	Title: Internet of Things	56.hrs/					
		sem					
Unit I	Definition and evolution of the Internet of Things. IoT architecture and						
	components. IoT communication protocols: MQTT, CoAP, HTTP. IoT	14hrs					
	application domains and use cases.						
	Overview of IoT devices: microcontrollers, sensors, actuators. Types and	14hrs					
Unit II	characteristics of sensors used in IoT applications. Interfacing sensors with						
	microcontrollers. Data acquisition and sensor fusion techniques.						
	Wireless communication technologies for IoT: Wi-Fi, Bluetooth, Zigbee, LoRa						
	WAN, etc. IoT network topologies: star, mesh, and hybrid networks. IoT data						
Unit III	management and storage. IoT protocols for device-to-device and device-to-cloud						
	communication.						
	IoT application development platforms and frameworks. Design and						
	implementation of						
Unit IV	IoT applications. IoT security challenges and solutions. Privacy and ethical						
	considerations in IoT.						

Ref	erence Books
1	Internet of Things: Principles and Paradigms by Rajkumar Buyya, Amir Vahid Dastjerdi, and AntonY.Dongarra.
2	Building the Internet of Things: Implement New Business Models, Disrupt Competitors, Transform Your Industry by Maciej Kranz.
3	IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things by David Hanes, Gonzalo Salgueiro, Patrick Grossetete, and Robert Barton.
4	Internet of Things with Arduino Cook book" by Marco Schwartz
5	Arduino Home Automation Projects" by Marco Schwartz and Oliver Manickum

Formative Assessment for Theory						
Assessment Occasion/type	Marks					
Internal Assessment Test1	10					
Internal Assessment Test2	10					
Assignment/Small Project/Activities	10					
Seminar	10					
Total	40 Marks					
Formative Assessment as per guidelines.						

B.Sc. Semester-VI

Discipline Specific Course (DSC)-16 Course Title: Internet of Things: Practicals

Course Code: 036 ELE 014

Type of Course	Theory /Practical	Credits	Instruction hour per week	Total No. of Lectures/ Hours /Semester	Duration of Exam	Formative Assessment Marks	Summative assessment Marks	Total Marks
DSCC-16	Practical	02	04	56hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course, students will be able to:

- 1. Understand the basics of Internet of things.
- 2. Understand the exchange of information through internet and blue tooth.
- 3. Understand the interfacing of sensors with Arduino.
- 4. Understand the interfacing of LED/buzzer/relay with Arduino.

Expt. No.	Title: Internet of Things Practical	56 hours
1	IOT based LED control (on and off).	
2	Exchanging of information through internet.	
3	IOT based air pollution control system.	
4	Actuator controlling through cloud.	
5	Controlling two actuators using Arduino.	
6	Exchanging data over short distance og Bluetooth using Arduino.	
7	LED blinking using Arduino (Uno/Pro) /microcontroller.	
8	Ultrasonic sensor with Arduino/ gas detector using Arduino.	
9	Interfacing buzzer and a Switch with Arduino/microcontroller.	
10	Stepper motor interfacing with Arduino /micrseocontroller.	
11	Interfacing a relay with Arduino.	
12	Light sensor using Arduino.	
13	Arduino based digital thermometer.	
14	TDS sensor interfacing with Arduino.	
15	Fingerprint sensor interfacing with Arduino.	

Minimum of 8 experiments from the following to be conducted

Formative Assessment for Practical							
Assessment	Distribution of Marks						
Algorithm / Flow chart	05						
Writing program	05						
Debugging and execution of program	10						
Viva-voce	02						
Completed and certified journal	03						
Total	25 Marks						
Formative Assessment as per guidelines.							

Note: The same shall be used for internal examination and semester end Examination from I sem to VI sem from the academic year 2023-24.

B.Sc. Semester–VI

Internship/Mini Project

Course Title: Internship/Mini Project in Electronics at UG level

Course Code: 036ELE091

Type of Course	Credits	Instruction hour per week	Total No. of Lectures/Hours /Semester	Duration of Exam	Formative Assessment Marks	Summative assessment Marks	Total Marks
Internship/ Project	02	04	56hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course the students will be able to

- CO1: The students learn the scientific methodology in carrying out internship/project work including planning and execution of the experiment.
- CO2: The students acquire experiential learning by handling instruments/devices, etc., while setting up an experiment or by reading in-depth assigned subject for theoretical analysis.
- CO3: The students learn the importance of team work, mutual participation and nurture their motivation either towards theoretical or experimental internship/project work.
- CO4: Internship/project helps students to get research and industrial exposure and application of knowledge.

Internship:

A course requiring students to participate in a professional activity or work experience, or cooperative education activity with an entity external to the education institution, normally under the supervision of an expert of the given external entity. A key aspect of the internship is induction into actual work situations for 2 credits. Internships involve working with local industry, local governments (such as panchayats, municipalities) or private organizations, business organizations, artists, crafts persons, and similar entities to provide opportunities for students to actively engage in on-site experiential learning.

Note:

- 1. One credit internship is equal to 30 hrs on field experience.
- 2. Internship shall be Discipline Specific of 45-60 hours (2 credits) with duration 1-2 weeks.
- 3. Internship may be full-time/part-time (full-time during last 1-2 weeks before closure of the semester or weekly 4 hrs. in the academic session for 13-14 weeks).
- 4. College shall decide the suitable method for program wise but not subject wise.
- 5. Internship mentor/supervisor shall avail work allotment during 6th semester for a maximum of 20hrs.
- 6. The student should submit the final internship report (45-60 hours of Internship) to the mentor for completion of the internship.
- 7. Method of Evaluation: Power Point Presentations, Submission of Report and Internship Completion Certificate.

Mini Project:

Electronics deals with various small and large circuits which deals with active and passive components, ICs, timers, sensors and embedded systems. Students can get good knowledge on electronics after doing some project work in the field.

The objective of the Project work is to provide a platform for the students to demonstrate their ability to apply their technical knowledge and skills gained from theory lectures and practical work throughout the course.

COs: After completing the project work students will be able to

- 1) Understand, plan and execute a mini project with team.
- 2) implement electronic hardware by learning PCB artwork design, soldering techniques, troubleshooting etc.
- 3) learn software development and hardware implementation.
- 4) Prepare a technical report on the mini project work.
- 5) Deliver a presentation based on the mini project work.

Mini project work is carried out in the following form:

This course will be conducted for students as an individual or in a group of three to four students under the guidance of a staff member in the college.

Course Guidelines:

- 1) Students should select a problem which addresses some basic home, office or other real life applications.
- 2) Students should understand testing of various component used in the selected circuits.
- 3) Soldering of components should be carried out by the students.
- 4) They should develop the necessary PCB for the circuit.
- 5) They should develop necessary software (optional) if required and implement it.
- 6) Final circuit should be submitted by them in working condition.
- 7) A written report of about 5 to 10 pages should be submitted individually.
- 8) A group of maximum four students can be permitted to work on one mini project.
- 9) Student should deliver presentation about the project and demonstrate its working individually.
- 10) The evaluation of the project carries a maximum of 50 marks. The experimental work and preparation of the report carries 40 Marks. The viva-voce examination carries a maximum of 10 marks and will be in the form of presentation by the student.

UG Programme: 2023-24

GENERAL PATTERN OF THEORY QUESTION COURSE FOR DSCC

(60 marks for semester end Examination with 2 hrs duration)

Part-A

1. Question number 1-06 carries 2 marks each. Answer any 05 questions : 10 marks

Part-B

2. Question number 07-11 carries 05Marks each. Answer any 04 questions : 20 marks

Part-C

3. Question number 12-15 carries 10 Marks each. Answer any 03 questions : 30 marks
(Minimum 1 question from each unit and 10 marks question may have sub
questions for 7+3 or 6+4 or 5+5 if necessary)

Total: 60 Marks

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed.